
Question 1

(a) Formulate a use case diagram to depict the MRT application design.

Your use case diagram should show the following:

(i) The actors

Administrator: this actor will manage all the activities and will be

super user can add lines, add stations also manage fares update fare.

Commuter: this actor will be ultimate user of the application and can

check for the station details, check routes.

Station Master: this actor will help commuters those are unable to

fetch details from application. This actor also can see the details of

the stations routes and fares.

System users: this actor will manage and updates details and

information needed to be updated.

(ii) The use cases and their relationships

(b) The following is an extract of the requirements documentation of the MRT

application:

 "The MRT fares are calculated based on distance travelled. This is a

convenient way to pay for train travel. For example, when a commuter has

travelled 10 km, he is charged $2.50. However, when a commuter enters and

exits from the same station, he is not charged since the distance is 0 km. The

fare for a route that includes 2 or more lines are calculated based on the sum

of the fare on each line."

 Analyse the above requirements and identify and explain any TWO (2)

ambiguous, incorrect, incomplete or inconsistent inadequacies for system

design. Note that in your answers, you are not supposed to use imagination to

add anything not mentioned in the requirements. Further, do not include

general commentaries in your answer

1) When the commuter is entered into the station he should be charged for

the station staying charge so when he tap his card at the gate then only

he would deducted the balance from his card.

2) In this way we can solve this problem that he is not travelling any

distance then also he is charged for some amount of money for station

services, in this way we can also solve the line problem.

Question 2

Develop a structural model for the MRT application design, by submitting your

answers to the following:

(a) Complete the class description by identifying classes, their attributes and

any hierarchical relationship(s) that would be required for the application.

There will be following classes in the system

Class Admin

Admin id:int

Admin Password:int

Class Train

Train code:int

Route:string

Start Station:string

End Station:string

Start time:date

End time:date

Category:string

Class Commuters

PNR number:int

Confirmation System:string

First name:string

Middle Name :string

Last Name :string

Age :int

Gender:string

Seat:string

class Station

Station code:int

Station Number:int

(b) Appraise the associations among the classes and hierarchical relationship(s)

that would be required for the application. Construct the class association

diagram in UML as your answer. Ensure that you do not include any derived or

redundant association in your diagram.

Question 3

Further analyses, as well as a few walkthroughs give rise to an updated class

diagram, part of which is shown in Figure Q3 below.

(a) State the role names, X and Y, of the association nextTo in Figure Q3

Role names X and Y states that X and Y are two stations which are next

to each other.

Ans- One instance of station X is associated with one instance of station

Y. Also, Station Y is located after station X.

(b) Write an invariant that specifies a station is next to a station which is not

itself.

One or more stations situated in a line are located in a distance more

than zero km.

(c) Consider the following walkthrough:

Objective: To add a station to a line.

Given: a line name, a station code, station name, next station code,

previous station code, distance to next station and distance to previous

station.

1. Locate the instance, aLine, of Line with the given line name, linked to

the orchestrating object via hasLines.

 HasLines

Orchasringinstance:Admin

Lines=a collection of lines

:aLines

“Line name”

“Stations”

“Intersections”

2. Locate the instance, aNextStation object with the next station code,

linked to the Line via consistsOf.

 Consist of

3. Locate the instance, aPrevStation object with the previous station

code, linked to the Line via consistsOf.

 Consist of

4. Create a new station, aStation object with the station code, station

name, distance to next station and distance to previous station.

5. Create the association between aLine and the new Station object,

aStation.

 Has

:aNextStation
:aNextStationc

ode

:aPrevStation :aPrev Station

code

Station:aStation

“”Station code”

“Station name”

“Distance to next

Station”

“Distance to

Previous Station”

Line:aLine
:aNextStationc

ode

6. Create the association between the aStation and aNextStation.

 After that

7. Create the association between the aStation and aPrevStation.

 Preside

(i) Identify the objects in the walkthrough by stating its name and its

class.

 Station: aNextStation object

 Admin: Commuter Object

 Station: aPrevStation object

 Station:aStation

:aStation :aNextStation

:astation :aPreviousStati

on

(ii) Using the objects identified in Q3(c) (i), develop the dynamic model

for the application function, by drawing the sequence diagram for the

walkthrough to assign a station to a line.

(iii) Implement the method in the orchestrating class that is responsible

for assigning the station to the line To add line between any two

stations we make use of class Lines. Which has several functions like

has line which can check for the existence of line.

Class orchestrating

{

i= orchestrating ()

{

i.addStation()

i.addLine()

i.existance_of_line()

Question 4

Commuters travelling on the MRT trains can buy a fare card with a minimum

stored value of $10. The fare card can be topped up with a minimum of $5 at

any time. When a fare card is tapped at a boarding station gate, its status is

Active and the distance value in the fare card is set to 0. When a fare card is

tapped at an alighting station gate, the MRT application would calculate the

distance travelled and deduct the fare from the stored value in the fare card.

The fare card then becomes Inactive. If there is insufficient stored value in the

fare card, the station gate would not open and the card continues to be Active.

The commuter needs to top up the fare card before he can tap at the alighting

station gate. A commuter may choose to return a fare card to the ticketing

office of any station and the stored value (if any) in the fare card would be

refunded to the commuter. Construct a component of the MRT application in

UML, by drawing the state diagram for a fare card as it passes through the

application.

Question 5

Commuters on the MRT trains can choose to pay for their fares using a stored

value fare card, a standard ticket or a concession pass. At an alighting station

gate, the respective deduction is effected as follows:

• Stored value fare card – the distance calculated fare is deducted from the

stored value in the card. You may assume that there is sufficient stored value

in the fare card.

• Standard ticket – each trip is deducted from the ticket. There may be up to 6

trips stored in a ticket. You may assume that there is at least 1 trip stored in

the ticket.

Concession pass – no deduction if valid. Unlimited train rides within a period is

allowed. A valid period is 30 days between a start date and an end date

(inclusive) stored in the concession pass.

Demonstrate the application of the strategy pattern in the MRT application by

submitting your answers to the following:

(a) Develop a structural model of the system that uses the strategy pattern by

constructing the class association diagram (including attributes and

operations) that allows commuters to pay for their train ride.

(b) Implement the classes for the structural model in Q4(a). For stored value

fare card, the amount paid is printed; for standard ticket and concession

pass, an appropriate message is to be displayed.

When user has less amount than cost of the journey he should be prompt

to recharge the fare card.

But for the concession card he should not be prompted for any message as

he has been paid for the entire month before only.

When user has sufficient amount of fund present in the fare card he should

be prompted thank you message.

Class Commuter

{

String first name;

String last_name

String_address

Int Farecard_id

Int consession_id

{

Pay_farecard()

Pay_consession_card()

}

}

Class Card

{

int card_id;

string holder_name;

float balance;

string last_six_journey;

{

Activate()

Deactivate()

Store_value_card()

}

}

Card extend Concession_Card

{

date starting_date;

Date expiry date;

}

Class Ticket

{

Int total_cost;

{

getTicket_info();

}

Class Structural

{

Public static void main String args[]

{

Commuter c = new Commuter();

Card C1=new Card ()

Ticket T1= new Ticket()

System.out.println (“Enter amount to be paid”)

Scanner sc=new Scanner (system.in)

balance=sc.balance()

if (balance<=0)

System.out.println (“Recharge the card”)

Elseif (Card==”concession card”)

System.out.println (“Payment already done”)

Else

{

System.out.println(“Thank you”)

}

}

